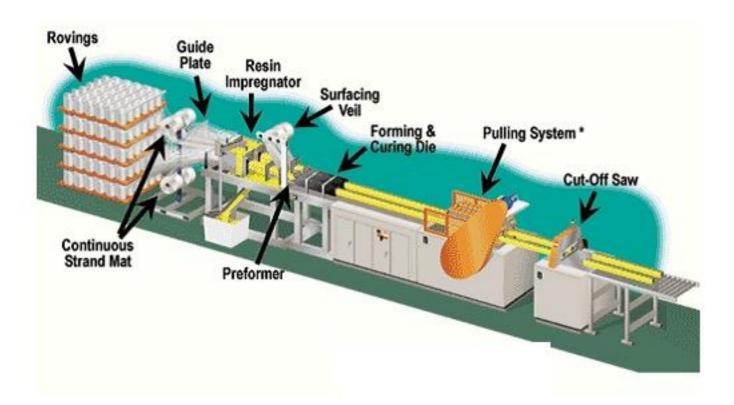


SPECIFICATIONS OF PULTRUDED LADDER-TYPE CABLE TRAYS


Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

www:MTgroup.ir

E-mail: mtg95.ir@Gmail.com

THE PULTRUSION PROCESS

Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymer structural shapes with constant cross-sections. Raw materials are a liquid resin mixture (containing resin, fillers and specialized additives) and flexible textile reinforcing fibers. The process involves pulling these raw materials (rather than pushing, as is the case in extrusion) through a heated steel forming die using a continuous pulling device. The reinforcement materials are in continuous forms such as rolls of mat and doffs of roving. As the reinforcements are saturated with the resin mixture ("wet-out") in the resin bath and pulled through the die, the gelatin or hardening, of the resin is initiated by the heat from the die and a rigid, cured profile is formed that corresponds to the shape of the die. While pultrusion machine design varies with part geometry, the basic pultrusion process concept is described in the following schematic.

The creels position the reinforcements for subsequent feeding into the guides. The reinforcement must be located properly within the composite and this is the function of the reinforcement guides.

The resin bath saturates (wets out) the reinforcement with a solution containing the resin, fillers, pigment, and catalyst plus any other additives required. The interior of the resin bath is carefully designed to optimize the wet-out of the reinforcement.

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

www:MTgroup.ir

Tel: +98 21-22942856 Mobile: +98 938 560 1212

1

E-mail:mtg95.ir@Gmail.com

On exiting the resin bath, the composite is in a flat sheet form. The performer is an array of tooling which squeezes away excess resin as the product is moving forward and gently shapes the materials prior to entering the forming and curing die. In the forming and curing die, the thermosetting reaction is heat activated (energy is primarily supplied electrically) and the composite is cured (hardened). On exiting the die, it is necessary to cool the hot part before it is gripped by the pull blocks (made of durable urethane foam) to prevent cracking and/or deformation by the pull blocks. Strong well uses two distinct pulling systems, one that is a caterpillar counter-rotating type and the other a hand-over-hand reciprocating type to pull the cured profile to the saw for cutting to length.

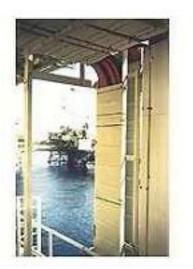
CABLE TRAY

Per the National Electrical Code, a cable tray system is "a unit or assembly of units or sections and associated fittings forming a rigid structural system used to securely fasten or support cables and race ways". Composite cable trays are fabricated from components derived from a process called PULTRUSION. This process enables a high percentage of reinforcement to be incorporated into the components giving it very superior strength. The strength of it in relation to its weight therefore exceeds the performance of those of steel or aluminum. Composite cable trays are made from a selection of premium resin reinforced with reinforcements to form a strong composite which is resistance to must chemicals and ultra violet. Composite cable tray resists acids, salts, alkalis and a wide range of aggressive chemicals and solvents. They are also available in fire retardant grade.

DIFFERENT TYPES OF CABLE TRAYS ARE:

1) Ladder type FRP cable trays:

2) Box type FRP cable trays:


Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

www:MTgroup.ir

Tel: +98 21-22942856 Mobile: +98 938 560 1212

APPLICATIONS OF CABLE TRAYS

Applications:

- Chemical and purification plants
- Refineries
- Tunnels
- Effluent treatment plants
- Marine industry
- Metallurgical plants
- Fertilizer plants
- Oil & Gas sector
- Food & Drag industry etc.

Users:

- Railway cable laying
- Telephone cable laying
- Electrical cable laying
- Protection of medium and low tension cable on walls or poles

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

www:MTgroup.ir

Tel: +98 21-22942856

Mobile: +98 938 560 1212

E-mail : mtg95.ir@Gmail.com

Benefits and Characteristics of FRP Cable Trays

- Corrosion Resistance
- Fire Resistance
- Non-Magnetic
- Impact Resistance
- Non-sparking
- Maintenance Free
- Light Weight
- Cost Saving
- Non-Conductive
- Low Installation Costs
- Superior Strength

DESCRIBTION

Mechanical Strength

- High Performance
- Easily Worked
- Cut and drilled on site
- Easy to install
- Long Life
- Non rust
- Nor do they ever require painting
- Resistance to most chemicals
- Gives added fire protection to the cables in case of external fire

CORROSION RESISTANCE

The ability of Composite Cable tray is to guard against deterioration from industrial chemicals and environmental factors makes it a logical and cost-effective alternative to carbon steel, aluminium or other conventional materials also it is resistance to weather and UV. Whether Cable tray is exposed to continuous submersion, splash, spills, fumes or gases, you can be assured that Composite Cable tray will outperform other mediums.

FIRE RESISTANCE

Composite Cable tray is available in various resin systems, two of which meet the Class 1 flame spread rating of 25 or less, in accordance with ASTM E-84 Tunnel Test Method. If a flame spread of 10 or less is required, it will be available in request.

NON-MAGNETIC

The non-magnetic properties allow the Composite Cable tray to be used in sensitive installations where the inherent magnetic properties of metallic Cable tray would prove unsuitable.

IMPACT RESISTANCE

The impact resistance of Composite Cable tray allows repeated deflection without permanent deformation. A certain amount of deflection can occur with loading. However, once the load is removed, the grating will return to its original shape, unlike metallic Cable tray, which will remain deformed and require costly repairs or replacement.

NON-SPARKING

The non sparking qualities of Composite Cable tray systems are ideally suited for those installations where hydrogen or other combustible gases may be found and which may explode or cause a fire from sparks produced.

MAINTENANCE FREE

The use of Composite Cable tray virtually eliminates maintenance costs since painting is not required and UV inhibitors protect against degradation from the sun.

LIGHTWEIGHT

Composite Cable tray weighs about one-quarter as much as steel Cable tray. So it needs few men for handling. The lightweight design of the Cable tray reduces installation and fabrication costs.

COST SAVINGS

In a review of costs, Composite Cable tray showed significant savings over the use of stainless steel Cable tray, and when consideration is given to 'life cycle costs', the saving over the use of metal Cable tray alternatives is quite considerable.

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

www:MTgroup.ir

Tel: +98 21-22942856 Mobile: +98 938 560 1212

E-mail:mtg95.ir@Gmail.com

NON-CONDUCTIVE

Composite Cable trays don't conduct heat or electricity and also protects the cables.

LOW INSTALLATION COSTS

Composite Cable tray weighs considerably less than conventional metal Cable trays and is easier and less expensive to transport, install and remove.

SUPERIOR STRENGTH

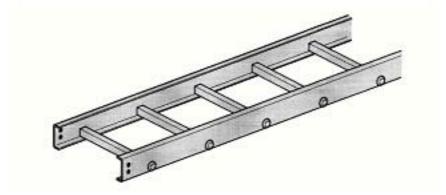
The high glass-to-resin ratio of Composite Cable tray provides superior strength and load-bearing characteristics. With structural integrity protected by its unique corrosion resistance capabilities, Composite Cable tray lasts longer than traditional materials.

MECHANICAL STRENGTH

Breaking strength under a lateral force is exceptional. The uni-directional continuous Composite reinforcement offers numerous advantages, including rigidity, shock-resistance and no permanent deformation after overloading. These factors provide excellent mechanical strength and a generous factor of safety. Composite Cable tray is designed for maximum safety in intensive industrial use.

HIGH PERFORMANCE

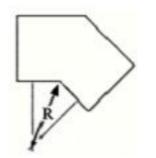
Composite structural Composite Cable tray materials have demonstrated a proven ability to withstand the harsh side effects of corrosive conditions better than galvanized steel. For many years, composites have been reliably used in traditionally corrosive industries while the cost of material is an important criteria in the design of a project, it does not reflect the total cost of the project. Beyond material purchase price, the engineer also should consider the related costs of installation, maintenance over time and replacement of debilitated materials.


Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

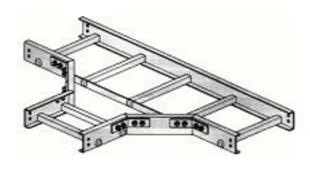
www:MTgroup.ir

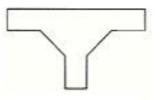
Tel: +98 21-22942856 Mobile: +98 938 560 1212

6


FIBERGLASS CABLE TRAY SELECTION

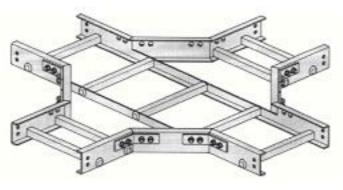

Straight Section


Horizontal Bend 90°, 45° (HB)

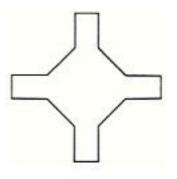

Horizontal Bend 90°

Horizontal Bend 45°

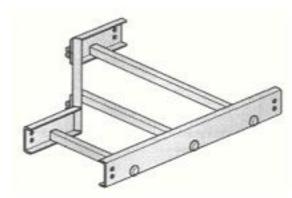
Horizontal Tee (HT)



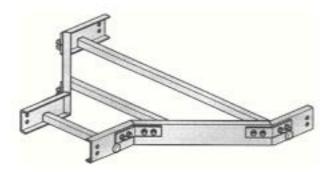
Horizontal Tee

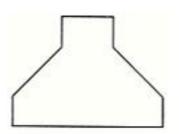

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

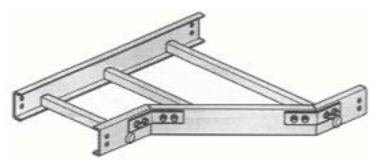
www:MTgroup.ir

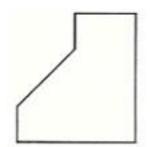

E-mail: mtg95.ir@Gmail.com

Horizontal Cross (HX)


Horizontal Cross

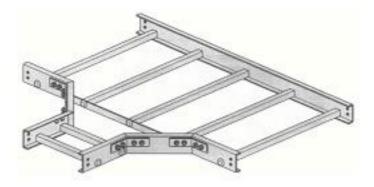

Reducer (LR)

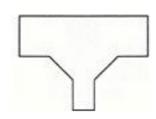

Left Reducer


Reducer (SR)

Straight Reducer

Reducer (RR)

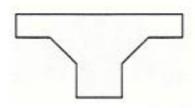



Right Reducer

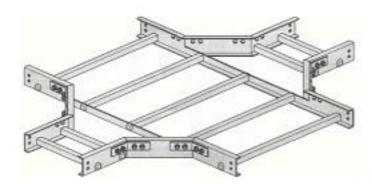
Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

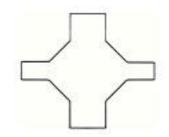
www:MTgroup.ir

Mobile: +98 938 560 1212

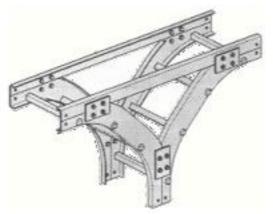


Horizontal Reducing Tee (HT)

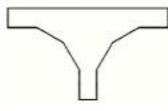



Horizontal Expanding Tee (HT)

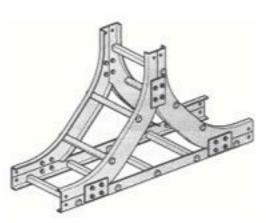
Horizontal Expanding Tee

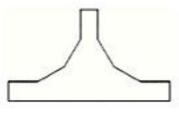


Horizontal Expanding / Reducing Cross (HX)

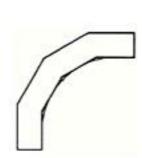


Horizontal Expanding / Reducing Cross


Office: Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 <u>www:MTgroup.ir</u>

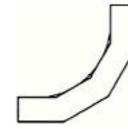

Vertical Tee Down (VTD)


Vertical Tee Down



Vertical Tee Up (VTU)

Vertical Tee Up

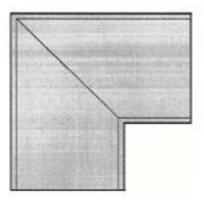


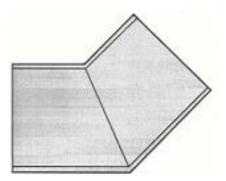
Outside Vertical Bend 90°

Outside Vertical Bend 45°

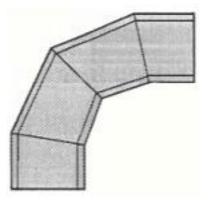
Outside Vertical Bend (VO)

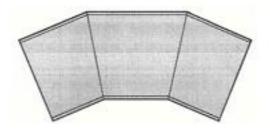
Intside Vertical Bend 90°

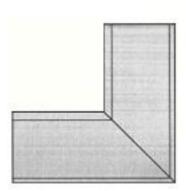


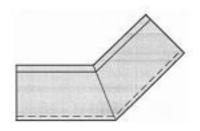

Inside Vertical Bend (VI)

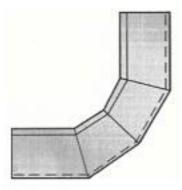
Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

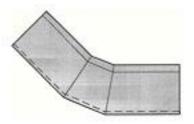

Inside Vertical Bend 45°


90° Direct Horizontal Bend

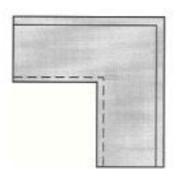

45° Direct Horizontal Bend


90° Horizontal Bend 12'' Radius

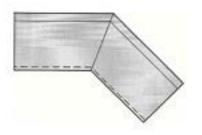

45° Horizontal Bend 12" Radius


90° Direct Vertical Inside Bend

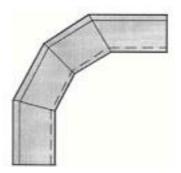
45° Direct Vertical Inside Bend

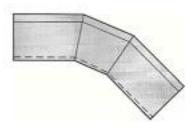


90° Vertical Inside Bend 12" Radius

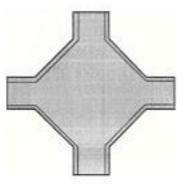


45° Vertical Inside Bend 12" Radius


Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53


90° Direct Vertical Outside Bend

45° Direct Vertical Outside Bend


90° Vertical Outside Bend 12" Radius

45° Vertical Outside Bend 12" Radius

Horizontal Tee 12" Radius

Horizontal Cross 12" Radius

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

Horizontal Tee Direct

CABLE TRAY CHEMICAL RESISTANCE GUIDE

CHEMICAL ENVIROMENT	POLYESTER		VINYL ESTER		CHEMICAL	POLYESTER		VINYL ESTER	
	Max Wt. %	Max Oper. Temp [°] F	Max Wt. %	Max Oper. Temp F	ENVIROMENT	Max Wt. %	Max Oper. Temp F	Max Wt. %	Max Oper Temp
Acetic Acid	10	190	10	210	Chromic Acid	5	70	10	120
Acetic Acid	50	125	50	180	Citric Acid	SAT	170	SAT	200
Acetone	N/R	N/R	100	75	Copper Chloride	SAT	170	SAT	200
Aluminum Chloride	SAT	170	SAT	200	Copper Cyanide	SAT	170	SAT	200
Aluminum Hydroxide	SAT	160	SAT	170	Copper Nitrate	SAT	170	SAT	200
Aluminum Nitrate	SAT	150	SAT	170	Crude Oil, Sour	100	170	100	200
Aluminum Sulfate	SAT	180	SAT	200	Cyclohexane	N/R	N/R	N/R	N/R
Ammonium Chloride	SAT	170	SAT	190	Cyclohexane, Vapor	ALL	100	ALL	130
Ammonium Hydroxide	1	100	10	150	Diesel Fuel	100	160	100	180
Ammonium Hydroxide	28	N/R	28	100	Diethy Ether	N/R	N/R	N/R	N/R
Ammonium Carbonate	N/R	N/R	SAT	150	Dimethyl Phthalate	N/R	N/R	N/R	N/R
Ammonium Bicarbonate	15	125	SAT	130	Ethanol	50	75	50	90
Ammonium Nitrate	SAT	160	SAT	190	Ethyl Acetate	N/R	N/R	N/R	N/R
Ammonium Persulfate	SAT	N/R	SAT	150	Ethylene Chloride	N/R	N/R	N/R	N/R
Ammonium Sulfate	SAT	170	SAT	200	Ethylene Glycol	100	90	100	200
Amyl Alcohol	ALL	N/R	ALL	90	Fatty Acids	SAT	180	SAT	200
Amyl Alcohol Vapor		140		120	Ferric Chloride	SAT	170	SAT	200
Benzene	N/R	N/R	100	140	Ferric Nitrate	SAT	170	SAT	200
Benzene Sulfonic Acid	25	110	SAT	200	Ferric Sulfate	SAT	170	SAT	200
Benzoic Acid	SAT	150	SAT	200	Ferrous Chloride	SAT	170	SAT	200
Benzoyl Alcohol	100	N/R	100	N/R	Fluoboric Acid	N/R	N/R	SAT	165
Borax	SAT	170	SAT	200	Fluosilicic Acid	SAT	N/R	SAT	70
Calcium Carbonate	SAT	170	SAT	200	Formaldehyde	50	75	50	100
Calcium Chloride	SAT	170	SAT	200	Formic Acid	SAT	N/R	50	100
Calcium Hydroxide	25	70	25	165	Gasoline	100	80	100	150
Calcium Nitrate	SAT	180	SAT	200	Glucose	100	170	100	200
Calcium Sulfate	SAT	180	SAT	200	Glycerine	100	150	100	200
Carbon Disulfide	N/R	N/R	N/R	N/R	Heptane	100	110	100	120
Carbonic Acid	SAT	130	SAT	180	Hexane	100	90	100	130
Carbon Dioxide Gas		200	sx - 1	200	Hydrobromic Acid	50	120	50	120
Carbon Monoxide Gas	¥ - 8	200	ax - 1	200	Hydrochloric Acid	10	150	10	200
Carbon Tetrachloride	N/R	N/R	100	75	Hydrochloric Acid	20	140	20	190
Chlorine, Dry Gas	38 - 3	140	N - 1	170	Hydrochloric Acid	37	75	37	95
Chlorine, Wet Gas		N/R	8	180	Hydrofluoric Acid	N/R	N/R	15	80
Chlorine Water	SAT	80	SAT	180	Hydrogen Bromide, Dry	100	190	100	200
Hydrogen Bromide, Wet	100	75	100	130	Potassium Hydroxide	N/R	N/R	25	150
Hydrogen Chloride	10 - 3	120	S	200	Potassium Nitrate	SAT	170	SAT	200

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

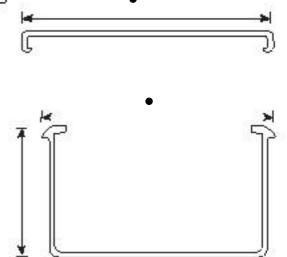
CHEMICAL ENVIROMENT	POLYESTER		VINYL ESTER		CHEMICAL	POLYESTER		VINYL ESTER	
	Max Wt. %	Max Oper. Temp [°] F	Max Wt. %	Max Oper. Temp F	ENVIROMENT	Max Wt. %	Max Oper. Temp F	Max Wt. %	Max Oper. Temp F
Hydrogen Peroxide	5	100	30	100	Potassium Permanganate	100	80	100	210
Hydrogen Sulfide, Dry	100	170	100	210	Potassium Sulfate	SAT	170	SAT	200
Hydrogen Sulfide, Wet	100	170	100	210	Propylene Glycol	ALL	170	ALL	200
Hypocholorous Acid	20	80	20	150	Phthalic Acid	·		SAT	200
Isopropyl Alcohol	N/R	N/R	15	80	Sodium Acetate	SAT	160	SAT	200
Kerosene	100	140	100	180	Sodium Benzoate	SAT	170	SAT	200
Lactic Acid	SAT	170	SAT	200	Sodium Bicarbonate	SAT	160	SAT	175
Lead Acetate	SAT	170	SAT	200	Sodium Bisulfate	ALL	170	ALL	200
Lead Chloride	SAT	140	SAT	200	Sodium Bromide	ALL	170	ALL	200
Lead Nitrate	SAT	· ·	SAT	200	Sodium Carbonate	10	80	35	160
Linseed Oil	100	150	100	190	Sodium Chloride	SAT	170	SAT	200
Lithium Chloride	SAT	150	SAT	190	Sodium Cyanide	SAT	170	SAT	200
Magnesium Carbonate	SAT	140	SAT	170	Sodium Hydroxide	N/R	N/R	50	150
Magnesium Chloride	SAT	170	SAT	200	Sodium Hydroxide	N/R	N/R	250	80
Magnesium Hydroxide	SAT	150	SAT	190	Sodium Hypochloride	N/R	N/R	10	150
Magnesium Nitrate	SAT	140	SAT	190	Sodium Monophosphate	SAT	170	SAT	200
Magnesium Sulfate	SAT	170	SAT	190	Sodium Nitrate	SAT	170	SAT	200
Mercuric Chloride	SAT	150	SAT	190	Sodium Sulfate	SAT	170	SAT	200
Mercurous Chloride	SAT	140	SAT	190	Sodium Thiosulfat	ALL	100	ALL	120
Methyl Ethyl Ketone	N/R	N/R	N/R	180 N/R	Stannic Chloridee	SAT	160	ALL	120
Mineral Oils	100	170	100	200	Styrene	N/R	N/R	N/R	190 N/R
Monochlobenzene	N/R	N/R	N/R	200 N/R	Sulfated Detergent	0/50	170	0/50	200
Naphtha	100	140	100	170	Sulfur Dioxide	100	80	100	200
Nickel Chloride	SAT	170	SAT	200	Sulfur Trioxide	100	80	100	200
Nickel Nitrate	SAT	170	SAT		Sulfuric Acid	93		93	
Nickel Sulfate	SAT	170	SAT	200	Sulfuric Acid	50	N/R	50	N/R
Nitric Acid	5	140	5		Sulfuric Acid	25	N/R	25	180
Nitric Acid	20	70	20	150	Sulfurous Acid	SAT	75	N/R	190
Oleic Acid	100	170	100	100	Tartaric Acid	SAT	80	SAT	N/R
Oxalic Acid	ALL	75	ALL	190	Tetrachloroethylene	N/R	170	FUM	200
Paper Mill Liquors	1.0	100		120	Toluene	N/R	N/R	N/R	75
Perchlorethylene	100	N/R	100	120	Trisodium Phosphate	N/R	N/R	SAT	N/R
Perchloric Acid	N/R	N/R	10	N/R	Urea	SAT	N/R	SAT	175
Perchloric Acid	N/R	N/R	30	150	Vinegar	100	130	100	140
Phosphoric Acid	10	160	10	80	Water, Distilled	100	170	100	200
Phosphoric Acid	100	120	100	200	Water, Tap	100	170	100	190
Potassium Aluminum		<u> </u>		200		4	170	-	190
Sulfate	SAT	170	SAT	200	Water, Sea	SAT	170	SAT	190
Potassium Bicarbonate	50	80	50	140	Xylene	N/R	N/R	N/R	N/R
Potassium Carbonate	10	N/R	10	120	Zinc Chloride	SAT	170	SAT	200
Potassium Chloride	SAT	170	SAT	200	Zinc Nitrate	SAT	170	SAT	200
Potassium Dichromate	SAT	170	SAT	200	Zinc Sulfate	SAT	170	SAT	200

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

PHYSICAL PROPERTIES OF LADDER - TYPE CABLE TRAY

Properties	Test Method	Unit	Value
Ultimate Tensile Strength	ASTM D638	PSI	30,000
Ultimate Compressive Strength	ASTM D695	PSI	30,000
Ultimate Flexural Strength	ASTM D790	PSI	30,000
Tensile Modulus		PSI×10 ⁶	2.5
Compressive Modulus		PSI×10 ⁶	2.5
Flexural Modulus		PSI×10 ⁶	1.6
Ultimate Shear Strength	8	PSI	5,500
Ultimate Bearing Stress		PSI	30,000
Izod Impact Strength (sample thickness 1/8")	ASTM D256	FtLBS. Per Inch of notch	25
Barcol Hardness	ASTM D2583-75	3	50
Electric Strength, Short Term in Oil 1/8"	ASTM D149	VPM	200
Electric Strength, Short Term in Oil		KV Per Inch	35
Dielectric Constant	ASTM D150	60HZ	5.6
Dissipation Factor	ASTM D150	60HZ	0.03
Arc Resistance	ASTM D495	Second	120
Surface Burning characteristics	ASTM E84	Max	15
Thermal Coefficient of Expansion	ASTM D696	Inches / Inch / °F	5×10 -6
Thermal Conductivity	ASTM C-177-76	BTU Per Sq. Ft./Hr./°F/In	4
Specific Heat		BTU / Lb. / °F	0.28
Density	ASTM D792	Lbs. / In ³	0.065
Specific Gravity	ASTM D792	1.8	
Water Absorption (24 hour Immersion)	ASTM D570	Max % by weight	0.5

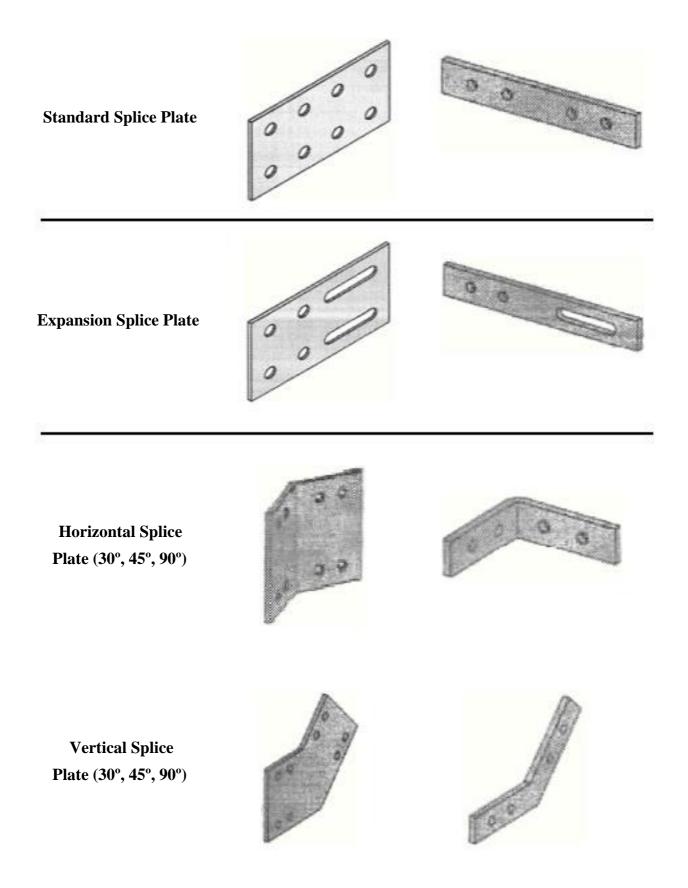
Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53


Properties	Test Method	Unit	Value
Ultimate Tensile Strength	ASTM D638	PSI	30,000
Ultimate Compressive Strength	ASTM D695	PSI	30,000
Ultimate Flexural Strength	ASTM D790	PSI	30,000
Electric Strength, Short Term in Oil 1/8"	ASTM D149	VPM	200
Electric Strength, Short Term in Oil		KV Per Inch	35
Thermal Coefficient of Expansion	ASTM D696	Inches / Inch / °F	5×10 -6
Density - Solid Shape	ASTM D792	Lbs. / In ³	0.065
Water Absorption (24 hour Immersion)	ASTM D570	Max % by weight	0.5
Surface Burning Characteristic	ASTM E84	Max	25

PHYSICAL PROPERTIES OF BOX - TYPE CABLE TRAY

LOAD DESCRIPTION

Fiberglass Box-Type Cable Tray System						
Catalog Number	Maximum Span (Ft)	Maximum Loading (Lb / Ft)				
CCT1	10	10				
CCT2	10	12				
CCT3	10	20				
CCT4	10	25				

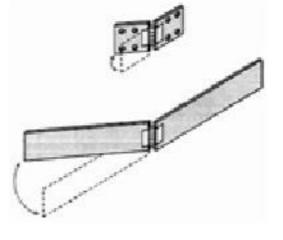

Catalog No.	Dimension mm					
	Α	В	С			
CCT1	102	121	129.75			
CCT2	102	324	333.75			
CCT3	152	171	180.75			
CCT4	152	324	333.75			

Fiberglass	Fiberglass Ladder-Type Cable Tray Systems - Working (Allowable) Load Lbs./Ft. (Kg/m)									
Support	Kind of Resins									
Span Ft. (m)	ELL3 Class A	ELL4 Class A	EHL4 Class A	ELL6 EMZ6 Class A	EIL6 Class B	D-EHL6 EHL6 Class C	D-EHL8 EHL8 Class C	D-EHL10 Class C		
30 (9.1)	-	-	-	-	-	-	-	100 (148)		
20 (6.0)	-	- 00 -	50 (74)	50 (74)	75 (111)	100 (148)	00 (148)	225 (335)		
18 (5.5)	-	-	76 (113)	61 (90)	92 (137)	123 (183)	23 (183)	277 (412)		
16 (4.8)	-	-	103 (153)	78 (116)	117 (174)	.56 (232) 15	6 (232)	-		
14 (4.3)	-	-	134 (199)	100 (149) 15	0 (232) 200	(298)	-	-		
12 (3.6)	-	50 (74)	176 (262)	139 (207) 20	8 (310)	-	-	-		
10 (3)	-	72 (107)	224 (333)	200 (298)	-	-	-	-		
8 (2.4)	50 (74)	112 (167)	-	-	-	-	-	-		

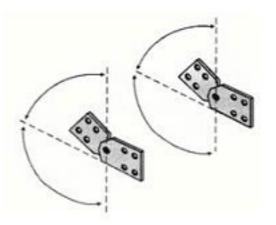
Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

SPLICE PLATES, CONNECTORS & ACCESSORIES FIBERGLASS CABLE TRAY SYSTEMS

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53


www:MTgroup.ir

Tel: +98 21-22942856 Mobile: +98 938 560 1212


E-mail : mtg95.ir@Gmail.com

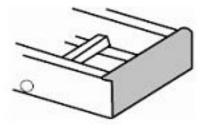
Horizontal Adjustable Connector

Vertical Adjustable Connector

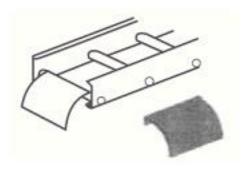
Tray To Box Splice Plates

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

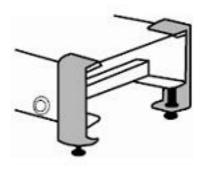
www:MTgroup.ir


Tel: +98 21-22942856 Mobile: +98 938 560 1212

E-mail : mtg95.ir@Gmail.com


Step Down Plates

Blind End Plate



Ladder Drop-out

Standard Cover Clamp

Heavy Duty Cover Clamp

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

STANDARDS OF FRP COMPOSITES

The Following Standards are used in composite productions:

ASTM C-177-85	Heat Flux
ASTM D-149-87	Dielectric Strength
ASTM D-229-86	Testing Rigid Sheet for Electrical Insulation (Ladder)
ASTM D-256-87	Impact Resistance
ASTM D-495-84	Electrical Resistance
ASTM D-570-81	Water Absorption
ASTM D-635-81	Flammability
ASTM D-638-87b	Tensile Strength
ASTM D-695-85	Compressive Strength
ASTM D-696-79	Thermal Expansion
ASTM D-709-87	Specifications for Laminated Thermosetting Materials
ASTM D-732-85	Shear Strength by Punch
ASTM D-790-86	Flexural Strength
ASTM D-792-86	Specific Gravity
ASTM D-953-87	Bearing Strength
ASTM D-1499-84	Weathering
ASTM D-1505-85	Density
ASTM D-2344-89	Interlaminar Short Beam Shear Strength
ASTM D-2583-87	Hardness
ASTM D-2584-85	Ignition Loss
ASTM D-3647-84	Classifying Pultruded Shapes
ASTM D-3846-85	In-plane Shear Strength
ASTM D-3914-84	In Plane Shear
ASTM D-3916-84	Tensile
ASTM D-3917-88	Dimensional Tolerances
ASTM D-3918-80	Pultrusion Terms
ASTM D-4385-88	Visual Defects
ASTM D-4475-85	Short Beam Shear Strength
ASTM D-4476-90	Flexural Properties
ASTM E-84-87	Tunnel Beam Test
ASTM E-662-83	Smoke Chamber
ASTM E-831-86	Linear Thermal Expansion (CTE)
ASTM F-1092-94	Handrails
ASTM G-23-81	Weathering
ASTM G-53-84	Weathering

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53

21