

SPECIFICATIONS OF MOLDED GRATINGS

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel: +98 21-22942856 Mobile: +98 938 560 1212

MOLDED GRATING PROCESS

Molded grating is manufactured in an open, heated mold that resembles a large waffle iron. Continuous reinforcements are placed in the mold in alternating layers and thoroughly wetted out with resin. This continuous process produces an integral, one-piece construction, which offers excellent corrosion resistance as well as bi-directional strength.

When the weaving process is completed, the mold is heated to cure the panel. If the grating is to have embedded grit, the mold will receive the grit at this time before the part is cured.

After curing, the part is extracted from the mold. The standard part would have a meniscus (concave) top surface for slip resistance. Should a standard grit surface be specified, the grit would be bonded to the top of the completed grating panel as a secondary operation.

MOLDED GRATING

Liquid resin and continuous fiberglass roving are systematically laid in the mold, layer after layer manually, to produce the desired thickness and panel dimensions. The finished molds are set aside for a predetermined time to allow the panel to cure. The panel is then ejected from the mold. The molds are cleaned and prepared for the process to begin again.

The one piece interwoven square mesh construction of molded grating produces two primary benefits: maximum corrosion resistance and high strength.

Because the grating is "cast" in one piece, there is no mechanical joint between bearing bars. The high percentage of resin in molded grating offers superior corrosion resistance. The molded grating with a square mesh pattern offers increased load capacity and panel utilization due to this bi-directional trait.

Cutting access holes in the molded grating does not weaken the panel and does not require additional or costly supports.

Office : Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel : +98 21-22942856 Mobile : +98 938 560 1212

APPLICATIONS OF MOLDED GRATING

Applications

- Flooring
- Platform
- Walkways
- Assembly Lines
- Trench Covers
- Stairs
- Catwalks
- Ramps
- Greenhouse Shelving •
- Pool Drainage
- Portable Building Floors

- Markets
- Chemical
- Electronics
- Marine (including military vessels)
- Oil & Gas
- Petroleum Processing
- Plating
- Pulp and Paper
- Water/Wastewater
- Zoos/Aquariums
- Recreational Facilities
- Manufacturing

Benefits and Characteristics of FRP Molded Grating

- Non-Slip
- Corrosion Resistance
- Fire Resistance
- Non-Magnetic
- Impact Resistance
- Non-sparking
- Maintenance Free
- Light Weight
- Raised Floors

- Standard Bearing Surfaces
- Design
- Cost Savings
- Non-conductive
- Low Installation Costs
- High Strength-to-Weight Ratio
- Conductive Grating
- High Performance
- Ergonomic

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel: +98 21-22942856 Mobile: +98 938 560 1212

DESCRIPTION

NON-SLIP

Composite Grating's integral grit top surface provides outstanding anti-slip protection for personnel in wet and oily environments. The grit is embedded in the top surface of each panel prior to curing. This combination of integral construction, plus depth of the embedded grit, creates a long-lasting maximum anti-slip top surface.

CORROSION RESISTANCE

Over a wide PH range (both acidic and caustic) is achieved by use of a premium grade resin system. FRP grating will outperform metallic grating when exposed to continuous submersion, splashing, spills, fumes or gases. Corrosion is a major problem for metal grating, stair treads and other products in many different industries such as chemical plants, food and beverage factories, water and wastewater facilities, power facilities. Molded grating are particularly designed to provide safe, long lasting and economical and worry-free solutions environments where chemicals and other corrosive materials attack and destroy metal.

FIRE RESISTANCE

Composite Grating is available in various resin systems, two of which meet the Class 1 flame spread rating of 25 or less, in accordance with ASTM E-84 Tunnel Test Method. If a flame spread of 10 or less is required, it will be available in request.

NON-MAGNETIC

The non-magnetic properties allow the Composite grating to be used in sensitive installations where the inherent magnetic properties of metallic grating would prove unsuitable.

IMPACT RESISTANCE

The impact resistance of Composite Grating allows repeated deflection without permanent deformation. A certain amount of deflection can occur with loading. However, once the load is removed, the grating will return to its original shape, unlike metallic grating, which will remain deformed and require costly repairs or replacement.

NON-SPARKING

The non sparking qualities of Composite Grating systems are ideally suited for those installations where hydrogen or other combustible gases may be found and which may explode or cause a fire from sparks produced from accidental dropping of tools onto the grating.

MAINTENANCE FREE

The use of Composite Grating virtually eliminates maintenance costs since painting is not required, and UV inhibitors protect against degradation from the sun.

LIGHTWEIGHT

Composite Grating weighs about one-quarter as much as steel grating. Two men can easily handle full panels, without the need for hoists, pulleys or dollies. If the Composite Grating needs to be moved for cleaning, maintenance or utility access, there is less chance of back injuries. The lightweight design of the grating reduces installation and fabrication costs, weighing only 12 kilos per sq mtr for 25mm and 18 kilos per sq mtr for 38mm.

RAISED FLOORS

Many plant operations have a need for slightly elevated Floor Grating. Fixed or adjustable pedestals can be used for applications up to a height of 600mm. Plastic insert mouldings, which raise the Composite Grating panels 7mm off the floor, are ideal for allowing liquid drainage below the Grating.

STANDARD BEARING SURFACES

On most installations, a minimum of 38mm bearing support should be provided under the edges of Composite Grating panels.

DESIGN

The design procedures associated with Composite Grating are entirely different from those associated with other materials. The prime consideration in designing with this reinforcement is allowable 'deflection' as opposed to ultimate 'loading' used with steel and aluminium. The reason for this is the inherent elasticity of reinforced plastic, permitting far greater deflection than steel, without the danger of structural failure. Load and deflection tables are available on request.

COST SAVINGS

In a review of costs, Composite grating showed significant savings over the use of stainless steel grating, and when consideration is given to 'life cycle costs', combining anti-slip benefits, the saving over the use of metal grating alternatives is quite considerable.

NON-CONDUCTIVE

The non-conductive properties make Composite Grating ideally suited for work platforms and flooring situated in electrically hazardous locations.

LOW INSTALLATION COSTS

Composite Grating weights considerably less than conventional metal gratings, and is easier and less expensive to transport, install and remove. Only simple hand tools are required for installation and removal, eliminating the need for costly equipment and labour costs associated with heavy lifting, cutting and welding.

HIGH STRENGTH-TO-WEIGHT RATIO

Molded grating manufactured as a composite of continuous strands and high quality resin is integrally constructed for strength, it is less than one-half the weight of steel grating allowing easy removal for access below floor level and installation with no heavy equipment and less manpower. Properly installed, molded grating meet specificied load requirements for steel and are more impact resistance than metal.

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel : +98 21-22942856 Mobile : +98 938 560 1212

ERGONOMIC

Employees are experiencing fatigue after standing on solid concrete and heavy non-adjustable galvanized steel platforms all day, molded grating is the best solution to ease the strain on the backs, foot and legs of workers increasing worker comfort and productivity due to its nature slight resiliency that makes them comfortable to stand on for a long period.

CONDUCTIVE GRATING

Composite Conductive Grating provides a specially formulated carbon, black surface, which will eliminate hazardous static electricity when properly grounded. This anti-static property is most advantageous in high-tech electronic industries where sophisticated equipment may be damaged due to static electricity. It also provides a safe environment in combustible areas by not allowing static sparks. Conductive Grating can be used in Railway Fuel Stations, Circuit Board Manufacture, Oil Refineries, Underground Mining Operations, Ammunition Factories etc.

HIGH PERFORMANCE

Composite structural Composite grating materials have demonstrated a proven ability to withstand the harsh side effects of corrosive conditions better than galvanized steel. For many years, composites have been reliably used in traditionally corrosive industries such as chemical processing, plating and marine construction. While the cost of material is an important criteria in the design of a project, it does not reflect the total cost of the project. Beyond material purchase price, the engineer also should consider the related costs of installation, maintenance over time and replacement of debilitated materials.

Туре	Panel Size (mm)	Thickness (mm)	Mesh Size (mm)	Appro. Wt. 2 (kg/m)
MG 100	3660 × 1220	25.4	38.1 × 38.1	13.5
MG 150-A	3660 × 1220	38.1	38.1 × 38.1	19.0
MG 150-B	4026 × 1525	38.1	38.1 × 38.1	19.0
MG 200	3660 × 1220	50.8	50.8 imes 50.8	25.0
MG 100R	3660 × 1220	25.4	25.4 × 101.6	15.0
MG 150R	3050×600	38.1	38.1 × 152.4	19.5

MOLDED GRATING SELECTION

MG 150-B

MOLDED GRATING CHEMICAL RESISTANCE GUIDE

CHEMICAL		TYPE VINIL		TYPE ISO	TYPE ORTHO			
Environment	% Conc.	Max. Oper. Temp. F/C	% Conc.	Max. Oper. Temp. F/C	% Conc.	MAX. OPER. TEMP. F/C		
Acetic Acid	50	180/82	50	125/52	25	N/R		
Aluminum Hydroxide	100	180/82	100	160/71	ALL	-		
Ammonium Chloride	ALL	210/99	ALL	170/77	ALL	-		
Ammonium Bicarbonate	50	160/70	15	125/52	ALL	-		
Ammonium Hydroxide	28	100/38	28	N/R	ALL	N/R		
Ammonium Sulfate	ALL	210/99	ALL	170/77	ALL	-		
Benzene	ALL	N/R	ALL	N/R	ALL	N/R		
Benzoic Acid	SAT	210/99	SAT	150/66	ALL	77/25		
Borax	SAT	210/99	SAT	170/77	ALL	-		
Calcium Carbonate	ALL	180/82	ALL	170/77	ALL	-		
Calcium Nitrate	ALL	210/99	ALL	180/82	ALL	-		
Carbon Tetrachloride	100	150/65	100	N/R	100	N/R		
Chlorine, Dry Gas	-	210/99	-	140/60	- 1	N/R		
Chlorine Water	SAT	200/93	SAT	80/27	SAT	N/R		
Chromic Acid	10	150/65	5	70/21	5	N/R		
Citric Acid	ALL	210/99	ALL	170/77	ALL	77/25		
Copper Chloride	ALL	210/99	ALL	170/77	ALL	104/40		
Copper Cyanide	ALL	210/99	ALL	170/77	ALL	77/25		
Copper Nitrate	ALL	210/99	ALL	170/77	ALL	-		
Ethanol	50	100/38	50	75/24	10	77/25		
Ethylene Glycol	100	200/93	100	90/32	100	104/40		
Ferric Chloride	ALL	210/99	ALL	170/77	ALL	104/40		
Ferrous Chloride	ALL	210/99	ALL	170/77	ALL	86/30		
Formaldehyde	ALL	150/65	50	75/24	25	-		
Gasoline	100	180/82	100	80/27	100	77/25		
Glucose	100	210/99	100	170/77	ALL	-		
Glycerin	100	210/99	100	150/66	100	-		
Hydrobromic Acid	50	150/65	50	120/49	18	-		
Hydrochloric Acid	37	150/65	37	75/24	10	86/30		
Hydrogen Peroxide	30	150/65	5	100/38	5	N/R		
Lactic Acid	ALL	210/99	ALL	170/77	ALL	77/25		
Lithium Chloride	SAT	210/99	SAT	150/66	ALL	-		
Magnesium Chloride	ALL	210/99	ALL	170/77	ALL	104/40		

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53Tel: +98 21-22942856Mobile: +98 938 560 1212

CHEMICAL		TYPE VINIL		TYPE ISO	TYPE ORTHO				
Environment	% Conc.	Max. Oper. Temp. F/C	% Conc.	Max. Oper. Temp. F/C	% Conc.	MAX. OPER. TEMP. F/C			
Magnesium Nitrate	ALL	210/99	ALL	140/66	ALL	86/30			
Magnesium Sulfate	ALL	210/99	ALL	170/77	ALL	104/40			
Mercuric Chloride	100	210/99	100	150/66	100	104/40			
Mercurous Chloride	ALL	210/99	ALL	140/60	ALL	104/40			
Nickel Chloride	ALL	210/99	ALL	170/77	ALL	104/40			
Nickel Sulfate	ALL	210/99	ALL	170/77	ALL	104/40			
Nitric Acid	20	120/49	20	70/21	2	N/R			
Oxalic Acid	ALL	210/99	ALL	75/24	ALL	N/R			
Perchloric Acid	30	100/38	10	N/R	10	N/R			
Phosphoric Acid	100	210/99	100	120/49	80	N/R			
Potassium Chloride	ALL	210/99	ALL	170/77	ALL	104/40			
Potassium Dichromate	ALL	210/99	ALL	170/77	ALL	77/25			
Potassium Nitrate	ALL	210/99	ALL	170/77	ALL	104/40			
Potassium Sulfate	ALL	210/99	ALL	170/77	ALL	104/40			
Propylene Glycol	ALL	210/99	ALL	170/77	ALL	104/40			
Sodium Acetate	ALL	210/99	ALL	160/71	ALL	104/40			
Sodium Bisulfate	ALL	210/99	ALL	170/77	ALL	-			
Sodium Bromide	ALL	210/99	ALL	170/77	5	-			
Sodium Cyanide	ALL	210/99	ALL	170/77	5	N/R			
Sodium Hydroxide	25	180/82	N/R	N/R	1	N/R			
Sodium Nitrate	ALL	210/99	ALL	170/77	ALL	104/40			
Sodium Sulfate	ALL	210/99	ALL	170/77	ALL	104/40			
Stannic Chloride	ALL	210/99	ALL	160/71	ALL	104/40			
Sulfuric Acid	75	100/38	25	75/24	10	-			
Tartaric Acid	ALL	210/99	ALL	170/77	ALL	-			
Vinegar	100	210/99	100	170/77	ALL	-			
Water, Distilled	100	180/82	100	170/77	ALL	86/30			
Zinc Nitrate	ALL	210/99	ALL	170/77	ALL	104/40			
Zinc Sulfate	ALL	210/99	ALL	170/77	ALL	104/40			

ALL...Concentrations; SAT...Saturated Solution; N/R...Not Recommended; -...No Information Available.

Physical Properties of Molded Grating

Property	Test Method	Units	Value
Tensile Strength	ASTM D-638	PSI	100,000
Tensile Modulus	ASTM D-638	PSI	5.6×10 ⁶
Flexural Strength	ASTM D-790	PSI	100,000
Flexural Modulus	ASTM D-790	PSI	5.6×10 ⁶
Compressive Strength	ASTM D-695	PSI	60,000
Izod Impact Notch	ASTM D-256	FtLbs./In.	40
Barcol Hardness		6	50 (Min.)
Specific Gravity	ASTM D-792		2
Water Absorption	ASTM D-570	Max. %	.03
Flame Retardant	ASTM E-84		Less than 25
Flame Retardant	ASTM D-635		Self-Extinguishing

Uniform Load (Kg/m)

Uniform Load Deflection(mm)

Uniform Load & Deflection Tables

Span	Style	Uniform Load & Deflection								Max Rec.							
		Lord	491	1022	1001	2944	4906	7208	7690	9650	0611	10572	11522	12405	12456	14415	L&D
38	38×38×25	Deflection	401	0.75	1.25	1 50	2.00	3.00	3.25	3.50	4.00	4.50	4 75	5.25	5 75	6.00	3.25
		Load	491	1441	2162	2019	2647	5424	5.20	6076	7912	9504	4.75	10209	11222	12220	9762
	38×38×30	Deflection	401	0.50	0.75	0.87	1.08	1.62	1 75	2 10	2 35	2.58	2 83	3 10	3.41	3.68	2 50
300		Load	481	0.50	1442	1002	2403	2883	3364	3844	4325	4806	7208	0611	14417	10222	0033
	38×38×38	Deflection	0.25	0.25	0.25	0.25	0.50	0.50	0.50	0.750	0.75	1.25	1.25	1.75	2.50	3.50	1.75
		Load	481	0.20	1442	1002	2403	3604	4806	7208	0611	14417	10222	24028	28824	20025	12014
	50×50×50	Deflection	0.25	0.25	0.25	0.25	0.25	0.50	0.50	0.75	1.00	14417	2.00	24020	3.00	3.00	12014
		Load	240	481	061	1201	1442	1022	2403	2883	3364	3844	4325	4806	6007	6247	3374
	38×38×25	Deflection	0.50	1.00	2.00	2.50	2.75	3.75	5.00	5.57	6.75	7.25	8.50	9.50	12.00	12.50	6.75
		Load	240	481	961	1311	1638	2203	1476	1771	1083	2181	2300	2638	2875	3105	3895
	38×38×30	Deflection	0.38	0.75	1 37	1.75	2.18	3.05	3 20	3.00	4 36	4 70	5.26	5.78	6 30	6.80	5.00
450		Load	240	481	061	1422	1022	2403	2883	3364	3844	4325	4806	6007	7028	0.00	4416
	38×38×38	Deflection	0.25	0.25	0.75	1.00	1522	1.75	2000	2.50	2.75	3.25	3.50	4.50	5.25	7.00	3.25
		Load	240	491	061	1442	1022	2402	3004	3604	4205	4906	7208	0611	12014	13215	5220
	50×50×50	Deflection	0.25	401	901	0.75	0.75	1.00	1.25	1.60	4205	2.25	2.25	4.25	5.25	6.00	2 25
		Load	120	240	360	481	0.75	1201	1442	1022	2.00	2.25	3604	3700	0.20	0.00	4808
	38×38×25	Deflection	0.75	1.50	2.25	3.00	6.25	7.75	0.25	1922	15.50	18 50	22.25	22.75			12.25
		Load	300	600	801	1201	0.20	2101	9.20	2710	2045	22.40	26.20	4051	4415		21015.5
	38×38×30	Deflection	0.00	1.50	2.62	612	7.65	10.71	11.56	12.07	16.62	15.00	10.50	20.57	12 40		0.075
600		Denection	0.00	1.50	2.02	1022	7.05	10.71	2264	10.07	10.00	6007	10.70	20.57	22.40		0.0/0
	38×38×38	Deflection	401	901	1422	1922	2403	6.05	5304	4000	4000	12.00	7208	10.25	20.75		2400
		Load	240	491	3.00	4.25	0.20 1022	0.25	7.25	0.75	2844	13.00	19.50	10.25	6729	7208	2004
	50×50×50	Deflection	0.35	401	1.00	1442	1922	2403	2000	3504	3044	4020	4000	6.25	0/20	7200	3004
		Dettection	0.25	0.50	2.60	1.50	2.00	2.50	3.00	3.50	4.00	4.50	3.00	0.25	7.00	7.50	3.00
	38×38×25	Deflection	120	240	5.25	401	10.25	12.75	1201	20.50	1922	2103	2265				1210
		Load	200	5.50	9.20	1201	10.25	2101	2260	20.50	20.49	2252	32.50	4055			1/.25
	38×38×30	Deflection	300	4.00	6.00	8.00	1016	14.20	15.20	10.26	20.56	22 60	3007	4055			1405.5
750		Load	491	4.00	1422	1022	2402	14.20	2264	2044	4225	4906	5386	27.50			12.575
	38×38×38	Deflection	401	901	1422	0.25	11.50	10.55	3304	3044	4525	4000	32.00	3767			7.50
		Load	2.20	4.50	0.75 701	9.20	061	13.75	10.00	2402	20.50	22.10	29.32	4225	4906		1022
	50×50×50	Deflection	0.50	401	1.75	2.00	3.05	2.50	1922	2405	2003	8.00	0.00	4020	4000		1922
		Load	120	240	260	491	2.25	0.50	4.50	2./2	0.75	0.00	9.00	10.25	11.25		4.50
	38×38×25	Deflection	2.75	240	300	401	721	21.00	28.50	1442	1502						27.00
		Load	3.75	200	420	601	751	1051	1125	40.25	1525	1677	1844				075.5
	38×38×30	Deflection	2 12	2.62	9.20	11 50	14.27	20.10	21.00	26.00	20 12	22.00	22.20				10.25
900		Load	3.13	3.03	0.20	701	14.57	120.10	1442	1692	1022	32.00	32.20	2264			19.25
	38×38×38	Deflection	240	2.75	401	721	10.00	12.01	1442	15.25	1922	2405	2005	24.75			1100
		Load	2.50	3.75	5.00	7.50	10.00	12.50	14.75	1022	19.75	24.75	29.15	34.15			1226
	50×50×50	Deflection	1.00	1.75	401	2.25	4 50	5.50	6.50	9.75	11.00	12.060	15.25				6.00
		Denection	1.00	1.75	2.25	3.23	4.50	0.50	0.50	0./0	11.00	15.25	19.29				0.00
	38×38×25	Load	5.05	1.67	343	450	25.24	915	59.57								39.24
		Lead	3.95	1.07	17.02	25.55	35.24	40.90	55.57								50.24
	38×38×30	Load	108	1/5	295	383	497	095.8	750								031.5
1000		Denection	12.15	14.58	15.99	20.78	27.00	33.00	30.20			003	015				22.025
	38×38×38	Load	229	252	275	297	320	343	458	527	087	801	915				773
		Detiection	4.05	4.52	5.00	5.24	5.71	0.19	8.10	10.24	12.38	14.29	10.43				13.81
	50×50×50	Load	229	343	458	915	1144	1373	1002	1831	2000	2288	2740				934
	Deflection	1.90	2.80	3.81	7.62	9.52	11.19	13.10	15.00	10.90	18.81	22.62				7.02	

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel : +98 21-22942856 Mobile : +98 938 560 1212

Concentrated Load (Kg/m)

Concentrated Load Deflection (mm)

Concentrated Line Load & Deflection Tables

Span	Style		Concentrated Line Load & Deflection Rec.										Max Rec.				
		Load	146	293	439	586	732	1099	1117	1318	1465	1611	1758	1904	2051	2197	1157
	38×38×25	Deflection	0.25	0.75	1.00	1.25	1.50	2.50	2.50	3.00	3.25	3.50	3.75	4.25	4.50	4.75	2.50
		Load	146	293	439	586	732	988	1067	1280	1305	1435	1578	1735	1891	2040	1335
	38×38×30	Deflection	0.25	0.75	0.75	0.95	1.18	1.65	1.78	2.13	2.38	2.61	2.87	3.15	3.43	3.70	2.00
300	20-20-20	Load	146	293	439	586	732	879	1025	1172	1318	1465	1831	2197	2563	2930	1513
	38×38×38	Deflection	0.25	0.25	0.50	0.50	0.75	0.75	1.00	1.00	1.25	1.25	1.75	2.00	2.50	2.75	1.50
		Load	146	366	732	879	1025	1172	1318	1392	1465	2197	2930	3662	4394	4541	1831
	50×50×50	Deflection	0.25	0.25	0.50	0.50	0.50	0.75	0.75	0.75	0.75	1.25	1.50	2.00	2.50	2.50	1.00
		Load	73	146	220	293	366	439	586	732	879	1025	1172	1318	1392	1465	772
	38×38×25	Deflection	0.50	1.00	1.50	2.00	2.50	3.0	4.00	5.00	6.00	7.00	8.25	9.25	9.75	10.25	5.25
		Load	110	219	329	439	548	767	828	9 93	1112	1223	1345	1479	1612	1740	1037
	38×38×30	Deflection	0.50	0.88	1.37	1.75	2.00	2.80	3.02	3.60	4.00	4.40	4.84	5.32	5.79	6.25	3.875
450		Load	146	293	439	586	732	879	1025	1172	1318	1465	1831	2197	2563	2930	1302
	38×38×38	Deflection	0.50	0.75	1.25	1.50	2.00	2.25	2.75	3.00	3.50	3.75	4.75	5075	6.50	7.50	2.50
		Load	73	146	293	439	586	732	915	1099	1282	1465	1831	2197	2563	2930	1200
	50×50×50	Deflection	0.25	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.75	3.50	4.00	4.50	2.00
		Load	37	73	110	146	293	366	439	586	732	879	1099	1128			579
	38×38×25	Deflection	0.50	1.25	1.75	2.50	5.00	6.25	7.50	10.00	12.25	14.75	18.50	19.00			9.75
		Load	91	183	274	292	370	518	559	670	750	825	907	997.7	1087		668
	38×38×30	Deflection	0.60	1.50	4.25	2.87	3.64	5.09	5.49	6.58	7.36	8.00	8.80	9.68	10.55		7.00
600		Load	146	293	439	586	732	879	1025	1172	1318	1465	1831	2197	2563		757
	38×38×38	Deflection	0.75	1.75	2.50	3.25	4.25	5.00	5.75	6.75	7.50	8.25	10.50	12.50	14.50		4.25
		Load	73	146	293	439	586	732	879	1025	1172	1318	1465	1831	2051	2197	915
	50×50×50	Deflection	0.25	0.50	0.75	1.25	1.50	2.00	2.50	2.75	3.25	3.50	4.00	5.00	5.50	6.00	2.50
		Load	37	72	110	146	220	293	366	439	586	732	879				463
	38×38×25	Deflection	1.00	2.25	3.25	4.50	6.50	8.75	11.00	13.25	17.50	22.00	26.25				13.75
		Load	55	109	201	292	365	511	551	661	740	814	895	984			534
	38×38×30	Deflection	0.88	1.88	3.15	4.50	5.62	7.86	8.40	10.10	11.30	12.40	13.64	15.00			9.875
750		Load	73	146	293	439	586	732	879	1025	1172	1318	1465	2197			605
	38×38×38	Deflection	0.75	1.50	3.00	4.50	5.75	7.25	8.75	10.25	11.75	13.25	14.75	22.00			6.00
		Load	73	146	293	439	586	732	879	1025	1172	1318	1465	1611	1758		732
	50×50×50	Deflection	0.25	0.75	1.50	2.25	3.00	3.50	4.25	5.00	5.75	6.50	7.25	8.00	8.75		3.50
		Load	37	73	146	220	293	366	439	586	732						385
	38×38×25	Deflection	2.00	4.00	8.25	12.25	16.50	20.50	24.75	33.00	41.25						21.75
	20-20-20	Load	55	91	146	220	275	385	415	498	557	612	673				444.5
	38×38×30	Deflection	1.63	3.00	5.5	8.12	10.15	14.21	15.30	18.36	20.56	22.60	24.86				15.375
900	20-20-20	Load	73	110	146	220	293	366	439	513	586	732	1099	1465			504
	38×38×38	Deflection	1.25	2.00	2.75	4.00	5.25	6.50	8.00	9.25	10.50	13.25	19.75	26.50			9.00
		Load	73	146	293	439	586	732	879	1025	1172	1318	1465				611
	50×50×50	Deflection	0.50	1.25	2.25	3.5	4.75	5.75	7.00	8.25	9.25	10.50	11.75				5.00
	20	Load	35	70	105	140	279	419	558								315
	38×38×25	Deflection	2.62	5.48	8.10	10.71	21.43	32.14	42.86								24.29
	10-10-10	Load	53	87.5	122	174	217	303	327	392.40	439						363.5
1000	38×38×30	Deflection	2.26	4.17	5.95	8.21	10.26	14.36	15.80	18.96	21.20						17.74
1000	20-20-20	Load	70	105	140	209	279	349	384	419	698	1046	1395				412
	38×38×38	Deflection	1.90	2.86	3.81	5.71	7.62	9.29	10.24	11.19	18.81	28.10	37.62				11.19
	50~50~50	Load	70	105	140	279	419	558	698	837	977	1116	1256				498
	50×50×50	Deflection	0.95	1.19	1.67	3.33	5.24	6.90	8.57	10.24	12.14	13.81	15.48				6.19

Office: Iran, Tehran, Ressalat Expy, Bani Hashem st, Sepideh Alley, No.6, Unit 53 Tel : +98 21-22942856 Mobile : +98 938 560 1212

MOLDED GRATING FASTENERS

Type "L" Clip-For use in securing grating to support frames.

Type "M" Hold Down Clips-Designed to fix grating on support structure & prevent it from turning in all four directions.

Type "C" Clips-Applied to connect two adjacent grating bars.

STANDARDS OF FRP COMPOSITES

The Following Standards are used in composite productions:

ASTM C-177-85	Heat Flux
ASTM D-149-87	Dielectric Strength
ASTM D-229-86	Testing Rigid Sheet for Electrical Insulation (Ladder)
ASTM D-256-87	Impact Resistance
ASTM D-495-84	Electrical Resistance
ASTM D-570-81	Water Absorption
ASTM D-635-81	Flammability
ASTM D-638-87b	Tensile Strength
ASTM D-695-85	Compressive Strength
ASTM D-696-79	Thermal Expansion
ASTM D-709-87	Specifications for Laminated Thermosetting Materials
ASTM D-732-85	Shear Strength by Punch
ASTM D-790-86	Flexural Strength
ASTM D-792-86	Specific Gravity
ASTM D-953-87	Bearing Strength
ASTM D-1499-84	Weathering
ASTM D-1505-85	Density
ASTM D-2344-89	Interlaminar Short Beam Shear Strength
ASTM D-2583-87	Hardness
ASTM D-2584-85	Ignition Loss
ASTM D-3647-84	Classifying Pultruded Shapes
ASTM D-3846-85	In-plane Shear Strength
ASTM D-3914-84	In Plane Shear
ASTM D-3916-84	Tensile
ASTM D-3917-88	Dimensional Tolerances
ASTM D-3918-80	Pultrusion Terms
ASTM D-4385-88	Visual Defects
ASTM D-4475-85	Short Beam Shear Strength
ASTM D-4476-90	Flexural Properties
ASTM E-84-87	Tunnel Beam Test
ASTM E-662-83	Smoke Chamber
ASTM E-831-86	Linear Thermal Expansion (CTE)
ASTM F-1092-94	Handrails
ASTM G-23-81	Weathering
ASTM G-53-84	Weathering