

SPECIFICATIONS OF PULTRUDED GRATINGS

THE PULTRUSION PROCESS

Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymer structural shapes with constant cross-sections. Raw materials are a liquid resin mixture (containing resin, fillers and specialized additives) and flexible textile reinforcing fibers. The process involves pulling these raw materials (rather than pushing, as is the case in extrusion) through a heated steel forming die using a continuous pulling device. The reinforcement materials are in continuous forms such as rolls of mat and doffs of roving. As the reinforcements are saturated with the resin mixture ("wet-out") in the resin bath and pulled through the die, the gelatin or hardening, of the resin is initiated by the heat from the die and a rigid, cured profile is formed that corresponds to the shape of the die. While pultrusion machine design varies with part geometry, the basic pultrusion process concept is described in the following schematic.

The creels position the reinforcements for subsequent feeding into the guides. The reinforcement must be located properly within the composite and this is the function of the reinforcement guides.

The resin bath saturates (wets out) the reinforcement with a solution containing the resin, fillers, pigment, and catalyst plus any other additives required. The interior of the resin bath is carefully designed to optimize the wet-out of the reinforcement.

On exiting the resin bath, the composite is in a flat sheet form. The performer is an array of tooling which squeezes away excess resin as the product is moving forward and gently shapes the materials prior to entering the forming and curing die. In the forming and curing die, the thermosetting reaction is heat activated (energy is primarily supplied electrically) and the composite is cured (hardened). On exiting the die, it is necessary to cool the hot part before it is gripped by the pull blocks (made of durable urethane foam) to prevent cracking and/or deformation by the pull blocks. Strong well uses two distinct pulling systems, one that is a caterpillar counter-rotating type and the other a hand-over-hand reciprocating type to pull the cured profile to the saw for cutting to length.

Pultruded Grating

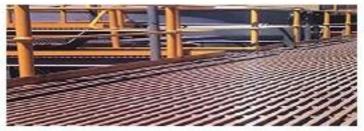
The pultruded grating product is a mostly mechanized process. Reinforcement of different shapes such as: strand, mat and veil are pulled through a liquid resin bath and a heated die where the bar is shaped and the resin is cured.

These pultruded bars can be cut into requested lengths. The bars are then drilled on the sides to accept the crossbars. The drilled bars are spaced. The final step is to seal the entire crossbars and holes with corrosion resistant epoxy resin.

The pultruded grating provides increased load capacity with moderate levels of corrosion resistance. The components (bearing bars and cross bars) are pulled by machine to have a higher reinforcement content. Its superior load capacity is a result of the higher reinforcement to resin ratio. The pultrusion process is automated and produces a consistent, high quality finished product. Assembled from bars,

APPLICATIONS OF PULTRUDED GRATING

Applications


- Flooring
- Platform
- Walkways
- Assembly Lines
- Trench Covers
- Stairs
- Catwalks
- Ramps
- Greenhouse Shelving •
- Pool Drainage
- Portable Building Floors

Markets

- Chemical
- Electronics
- Marine (including military vessels)
- Oil & Gas
- Petroleum Processing
- Plating
- Pulp and Paper
- Water/Wastewater
 - Zoos/Aquariums
 - Recreational Facilities
 - Manufacturing

Benefits and Characteristics of FRP Pultruded Grating

- Non-Slip
- Corrosion Resistance
- Fire Resistance
- Non-Magnetic
- Impact Resistance
- Non-sparking
- Maintenance Free
- Light Weight
- Raised Floors

- Standard Bearing Surfaces
- Design
- Cost Savings
- Non-conductive
- Low Installation Costs
- Superior Strength
- Mechanical Strength
- Conductive Grating
- High Performance

DESCRIPTION

NON-SLIP

Composite Grating's integral grit top surface provides outstanding anti-slip protection for personnel in wet and oily environments. The grit is embedded in the top surface of each panel prior to curing. This combination of integral construction, plus depth of the embedded grit, creates a long-lasting maximum anti-slip top surface.

CORROSION RESISTANCE

The ability of Composite grating is to guard against deterioration from industrial chemicals and environmental factors makes it a logical and cost-effective alternative to carbon steel, aluminium, wood or other conventional materials. Whether the grating is exposed to continuous submersion, splash, spills, fumes or gases, you can be assured that Composite grating will outperform other mediums.

FIRE RESISTANCE

Composite Grating is available in various resin systems, two of which meet the Class 1 flame spread rating of 25 or less, in accordance with ASTM E-84 Tunnel Test Method. If a flame spread of 10 or less is required, it will be available in request.

NON-MAGNETIC

The non-magnetic properties allow the Composite grating to be used in sensitive installations where the inherent magnetic properties of metallic grating would prove unsuitable.

IMPACT RESISTANCE

The impact resistance of Composite Grating allows repeated deflection without permanent deformation. A certain amount of deflection can occur with loading. However, once the load is removed, the grating will return to its original shape, unlike metallic grating, which will remain deformed and require costly repairs or replacement.

NON-SPARKING

The non sparking qualities of Composite Grating systems are ideally suited for those installations where hydrogen or other combustible gases may be found and which may explode or cause a fire from sparks produced from accidental dropping of tools onto the grating.

MAINTENANCE FREE

The use of Composite Grating virtually eliminates maintenance costs since painting is not required, and UV inhibitors protect against degradation from the sun.

LIGHTWEIGHT

Composite Grating weighs about one-quarter as much as steel grating. Two men can easily handle full panels, without the need for hoists, pulleys or dollies. If the Composite Grating needs to be moved for cleaning, maintenance or utility access, there is less chance of back injuries. The lightweight design of the grating reduces installation and fabrication costs, weighing only 12 kilos per sq mtr for 25mm and 18 kilos per sq mtr for 38mm.

RAISED FLOORS

Many plant operations have a need for slightly elevated Floor Grating. Fixed or adjustable pedestals can be used for applications up to a height of 600mm. Plastic insert mouldings, which raise the Composite Grating panels 7mm off the floor, are ideal for allowing liquid drainage below the Grating.

STANDARD BEARING SURFACES

On most installations, a minimum of 38mm bearing support should be provided under the edges of Composite Grating panels.

DESIGN

The design procedures associated with Composite Grating are entirely different from those associated with other materials. The prime consideration in designing with this reinforcement is allowable 'deflection' as opposed to ultimate 'loading' used with steel and aluminium. The reason for this is the inherent elasticity of reinforced plastic, permitting far greater deflection than steel, without the danger of structural failure. Load and deflection tables are available on request.

COST SAVINGS

In a review of costs, Composite grating showed significant savings over the use of stainless steel grating, and when consideration is given to 'life cycle costs', combining anti-slip benefits, the saving over the use of metal grating alternatives is quite considerable.

NON-CONDUCTIVE

The non-conductive properties make Composite Grating ideally suited for work platforms and flooring situated in electrically hazardous locations.

LOW INSTALLATION COSTS

Composite Grating weights considerably less than conventional metal gratings, and is easier and less expensive to transport, install and remove. Only simple hand tools are required for installation and removal, eliminating the need for costly equipment and labour costs associated with heavy lifting, cutting and welding.

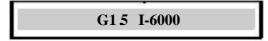
SUPERIOR STRENGTH

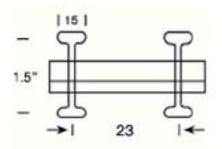
The high glass-to-resin ratio of Composite grating provides superior strength and load-bearing characteristics. With structural integrity protected by its unique corrosion resistance capabilities, Composite grating lasts longer than traditional materials.

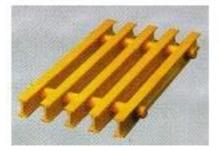
MECHANICAL STRENGTH

Breaking strength under a lateral force is exceptional. The uni-directional continuous Composite reinforcement offers numerous advantages, including rigidity, shock-resistance and no permanent deformation after overloading. These factors provide excellent mechanical strength and a generous factor of safety. Composite Grating is designed for maximum safety in intensive industrial use.

CONDUCTIVE GRATING


Composite Conductive Grating provides a specially formulated carbon, black surface, which will eliminate hazardous static electricity when properly grounded. This anti-static property is most advantageous in high-tech electronic industries where sophisticated equipment may be damaged due to static electricity. It also provides a safe environment in combustible areas by not allowing static sparks. Conductive Grating can be used in Railway Fuel Stations, Circuit Board Manufacture, Oil Refineries, Underground Mining Operations, Ammunition Factories etc.


HIGH PERFORMANCE


Composite structural Composite grating materials have demonstrated a proven ability to withstand the harsh side effects of corrosive conditions better than galvanized steel. For many years, composites have been reliably used in traditionally corrosive industries such as chemical processing, plating and marine construction. While the cost of material is an important criteria in the design of a project, it does not reflect the total cost of the project. Beyond material purchase price, the engineer also should consider the related costs of installation, maintenance over time and replacement of debilitated materials.

PULTRUDED GRATING SELECTION

Туре	Thickness	Bar Width (mm)	Open Space (mm)	Open Area (%)	Appro. Wt. (kg/m)
G1.5 I-6000	1.5"	15	23	60	18
G1.5 I-5000	1.5"	15	15	50	22
G1.5 I-4000	1.5"	15	10	40	26
G1.0 I-6000	1.0"	15	23	60	11.5
G1.0 I-5000	1.0"	15	15	50	14
G1.0 I-4000	1.0"	15	10	40	16.5
G40I-5000	40 mm	30	30	50	12
G40I-5000	10 mm	30	20	40	13.5
G65I-5000	65 mm	30	30	50	14
G65I-4000	65 mm	30	20	40	17

PULTRUDED GRATING CHEMICAL RESISTANCE GUIDE

CHEMICAL	VINYL ES	TER RESIN	ISOPHATHALIC	POLYESTER
ENVIRONMENT	% CONCENTRATION	IAX. OPEN. TEMP. F/C %	CONCENTRATION MAX. OF	PEN. TEMP. F/C
Acetic Acid	50	180/82	50	125/52
Aluminum Hydroxide	100	170/77	100	160/71
Ammonium Chloride	ALL	190/88	ALL	170/77
Ammonium Hydroxide	28	100/38	28	N/R
Ammonium Bicarbonate	50	150/65	15	125/52
Ammonium Sulfate	ALL	200/93	ALL	170/77
Benzene	N/R	N/R	N/R	N/R
Benzoic Acid	SAT	200/93	SAT	150/66
Borax	SAT	200/93	SAT	170/77
Calcium Carbonate	ALL	180/82	SAT	170/77
Calcium Nitrate	ALL	200/93	ALL	180/82
Carbon Tetrachloride	100	75/24	N/R	N/R
Chlorine, Dry Gas		170/77	Î	140/60
Chlorine Water	SAT	180/82	SAT	80/27
Chromic Acid	10	120/49	5	70/21
Citric Acid	ALL	200/93	ALL	170/77
Copper Chloride	ALL	200/93	ALL	170/77
Copper Cyanide	ALL	200/93	ALL	170/77
Copper Nitrate	ALL	200/93	ALL	170/77
Ethanol	50	90/32	50	75/24
Ethylene Glycol	100	200/93	100	90/32
Ferric Chloride	ALL	200/93	ALL	170/77
Ferrous Chloride	ALL	200/93	ALL	170/77
Formaldehyde	ALL	100/38	50	75/24
Gasoline	100	150/65	100	80/27
Blucose	100	200/93	100	170/77
Blycerin	100	200/93	100	150/66
lydrobromic Acid	50	120/49	50	120/49
lydrochloric Acid	37	100/38	37	75/24
Hydrogen Peroxide	30	100/38	5	100/38
Lactic Acid	ALL	200/93	ALL	170/77
Lithium Chloride	SAT	200/93	SAT	150/66
Magnesium Chloride	ALL	200/93	ALL	170/77

Office: Iran, Tehran, Ressalat Expy, Bani Hashem St, Sepideh Alley, No.6, Unit 53 Tel: +98 21-22942856 Mobile: +98 938 560 1212 com www.MTgroup.ir E-mail: mtg95.ir@Gmail.com

CHEMICAL	VINYL ES	TER RESIN	ISOPHATHALIC POLYESTER					
ENVIRONMENT	% CONCENTRATION	IAX. OPEN. TEMP. F/C % C	ONCENTRATION MAX. O	PEN. TEMP. F/C				
Magnesium Nitrate	ALL	180/82	ALL	140/66				
Magnesium Sulfate	ALL	190/88	ALL	170/77				
Mercuric Chloride	100	190/88	100	150/66				
Mercurous Chloride	ALL	180/82	ALL	140/60				
Nickel Chloride	ALL	200/93	ALL	170/77				
Nickel Sulfate	ALL	200/93	ALL	170/77				
Nitric Acid	20	100/38	20	70/21				
Oxalic Acid	ALL	120/96	ALL	75/24				
Perchloric Acid	30	80/27	N/R	N/R				
Phosphoric Acid	100	200/93	100	120/49				
Potassium Chloride	ALL	200/93	ALL	170/77				
Potassium Dichromate	ALL	200/93	ALL	170/77				
Potassium Nitrate	ALL	200/93	ALL	170/77				
Potassium Sulfate	ALL	200/93	ALL	170/77				
Propylene Glycol	ALL	200/93	ALL	170/77				
Sodium Acetate	ALL	200/93	ALL	160/71				
Sodium Bisulfate	ALL	200/93	ALL	170/77				
Sodium Bromide	ALL	200/93	ALL	170/77				
Sodium Cyanide	ALL	200/93	ALL	170/77				
Sodium Hydroxide	25	150/66	N/R	N/R				
Sodium Nitrate	ALL	200/93	ALL	170/77				
Sodium Sulfate	ALL	200/93	ALL	170/77				
Stannic Chloride	ALL	190/88	ALL	160/71				
Sulfuric Acid	75	100/38	25	75/24				
Fartaric Acid	ALL	200/93	ALL	170/77				
/inegar	100	200/93	100	170/77				
Water, Distilled	100	180/82	100	170/77				
Zinc Nitrate	ALL	200/93	ALL	170/77				
Zinc Sulfate	ALL	200/93	ALL	170/77				

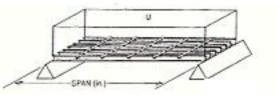
ALL...Concentrations; SAT...Saturated Solution; N/R...Not Recommended; -...No Information Available.

Property	Test Method	Units	I-Bar 70-75 % Glass	I-Bar 65-70 % Glass
Tensile Strength	ASTM D-638	PSI	125,000	100,000
Tensile Modulus	ASTM D-638	PSI	6.0 ×10 ⁶	5.6 ×10 ⁶
Flexural Strength	ASTM D-790	PSI	125,000	100,000
Flexural Modulus	ASTM D-790	PSI	6.0 ×10 ⁶	5.6×10 ⁶
Compressive Strength	ASTM D-695	PSI	65,000	5.0 ×10
Izod Impact Notch	ASTM D-256	FtLbs./In.	40	40
Barcol Hardness			50 (Min.)	50 (Min.)
Specific Gravity	ASTM D-792		2	30 (MIIII.)
Water Absorption	ASTM D-570	Max. %	.03	03
Flame Retardant	ASTM E-84		Less than 25	Loss than 25
Flame Retardant	ASTM D-635		Self-Extinguishing	Self-Extinguishing

Physical Properties of Pultruded Grating

LOAD DESCRIPTION

			no		
			r.	-	
	A				Day -
1	Equal	14	w	\square	/
	-SPAN (In	-	-		


PULTRUDED GRATING	(Metric units)
CONCENTRATED LOAD TABLES	- DEFLECTION IN mm

SPAN IN	0.854545	1.0	36	LOAD	IN KNIn	n OF WI	DTH (C	DNCENT	RATED	1	225	10-1002	100.00	10.00	77.5	MUCOMUM
mm	STYLE	3	5	8	10	13	15	20	25	39	50	100	150	200	250	RECOMMENDED
	1-1-60	0.4	0.6	1.0	1.3	1.7	1.9	2.6	3.2	5.0	6.4	12.8	1512.5			56
	1"1-60	0.3	0.4	0.7	0.9	1.1	1.3	1.7	2.1	3.3	4.3	8.5	12.8			83
400	1 1/2" 1-60	0.2	0.3	0.5	0.6	0.7	8.0	1,1	1.4	2.2	2.8	5.6	8.4	11.3	14,1	76
	1 1/2" 1-40	0.1	0.2	0.3	0.4	0.5	0.6	0.8	0.0	1.5	1.9	3.8	5.6	7.5	9.4	114
	2" T-50	0.1	0.2	0.3	0.4	0.5	0.6	8.0	1.0	1.6	2.1	4.1	6.2	8.3	10.3	79
	2" T-33	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.8	1.2	1.5	3.1	4.7	6.2	7.8	138
	1-1-60	1.0	1.7	2.8	3.5	4.5	5.2	7.0	8.7	13.6		100000	1000			41
	1~1-40	0.7	1.2	1.9	2.3	3.0	3.5	4.7	5.8	9.1	11.7					62
600	1 1/2" 1-60	0.4	0.7	1.1	1.4	1.8	2.1	2.8	3.5	5.4	7.0	13.9				51
	1 1/2" 1-40	0.3	0.5	0.7	0.9	1.2	1,4	1.9	2.3	3.6	4.6	9.3	13.9			78
	2" T-50	0.3	0.5	0.7	0.9	1.2	5,4	1.8	2.3	3.6	4.6	9.2	13.8			79
	2" T-33	0.2	0.3	0.6	0.7	0.9	1.0	1.4	1.7	2.7	3.4	6.9	10.3	13.8		105
	1" 1-60	2.3	3.9	6.2	7.7	10.0	11.6	15.4					_			33
	1" 1.40	1.5	2.6	4.1	5.2	6.7	7.7	10.3	12.9							50
800	1 1/2" 1-50	0.9	1.5	2.4	2.9	3.8	4.4	5.9	7.4	11.5	14.7					41
	1 1/2" 1-40	0.6	1.0	1.6	2.0	2.6	2.9	3.9	4.9	7.7	9.8					61
	2" T-50	0.5	0.9	1.4	1.8	2.4	2.7	3.6	4.5	7.5	9.0					63
	2" T-33	0.4	0.7	1.1	1.4	1.8	2.0	2.7	3.4	5.3	6.8	13.6				85
	1"1-60	4,4	7.3	.11.7	14,7											25
	1"1-40	2.9	4.9	7.8	9.8	12.7	14.7									38
1000	1 1/2" 1-60	1.6	2.7	4.4	5.5	7.1	8.2	10.9	13.7							33
	1 1/2" 1-60	5.5	1.8	2.9	3.7	4.7	5.5	7.3	9.1	14.2						50
	2" T-50	1.0	1.7	2.7	3.3	4.3	5.0	6.6	4.3	13.0						50
	2" T-33	0.7	1.2	2.0	2.5	3.2	3.7	5.0	6.2	9.7	12.5					67
	1" 1-60	7.5	12,4													21
100	1"1-40	5.0	8.3	13.3												31
1200	1 1/2" 1-60	28	4.7	7.5	9.3	12,1	14.0									26
	1 1/2" 1-40	1.9	3.1	5.0	6.2	8.1	9.3	12.5	15.6						- 1	39
	2" T-50	1.7	2.8	4.4	5.5	7.2	8.3	11.0	13.8							33
10000	2" 7-33	1.2	2.1	3.3	4.1	5.4	6.2	8.3	10.4		133.54	5223	10.00	12711		44
1400	1 1/2" 1-60	4.4	7.4	31.8	14.8	-96.2	12620									19
	1 1/2" 1-40	3.0	4.9	7.9	9.9	12.8	14.8								- 19	29
	2" 7-50	2.6	4.3	6.8	8.5	11.1	12.8									31
	2" T-33	1.9	3.2	5.1	6.4	8.3	9.6	12.8	16.0							42
1600	1 1/2" 1-60	6.6	11.0	10.00	1.500			100.000		-						15
×192.01.	1 1/2" 1-40	4.4	7.3	11.7	14.7											24
	2* T-50	3.8	6.3	10.1	12.6											26
	2" T-33	2.8	4.7	7.6	9.5	12.3	14.2									35

14

NOTES:

- 1- The designer should not exceed MAXIMUM RECOMMENDED load at any time. MAXIMUM LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.
- 2- ULTIMATE CAPACITY represents a complete and total failure of the grating.
- 3- Walking loads, typically 2.4 KN/M is recommended for pedestrian traffic. Deflections for worker comfort are typically limited to 9mm or SPAN divided by 120 under full live load.
 For a firmer feel under full live load or a 3.6 KN/M load, limit deflection to 6mm or SPAN divided by 200.
- 4- The allowable loads are for STATIC LOAD CONDITIONS at ambient temperatures. Allowable loads for impact or dynamic loads should be a maximum of ONE-HALF the value shown.
 Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance.
- 5- For applications at elevated temperatures, consult your manufacture.

SPAN IN				LOAD	IS KNR	SQm (U	NIFORM	4)							_	MAXIMUM
mm	STYLE	3	5	8	10	13	15	20	25	39	50	100	150	200	250	RECOMMENDED
-	1"1-60	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.8	1.2	1.6	3.2	4.8	6.4	8.0	279
	1" 1-40	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5	5,5	2.1	3.2	4.3	53	419
400	1 1/2" 1-60	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.7	1.4	2.1	2.8	3.5	383
	1 1/2" 1-40	0.0	0.0	0.1	0.1	0.1	0.5	0.2	0.2	0.4	0.5	0.9	1.4	1.9	2.3	574
	2" T-50	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.5	1.0	1.6	2.1	2.6	520
	2" T-33	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.4	8.0	1.2	1.6	1.9	694
	171-60	0.4	0.7	1.0	1.3	1.7	2.0	2/6	3.3	5.1	6.6	13.1	1000			158
	1"1-40	0.3	0.4	0.7	0.9	5,5	1.3	1.8	2.2	3.4	4.4	8.8	13.8			207
600	1 1/2" 1-60	0.2	0.3	0.4	0.5	0.7	0.8	1.0	1.3	2.0	2.6	5.2	7.8	10.4	13.0	173
	11/2*1-40	0.1	0.2	0.3	0.3	0.5	0.5	0.7	0.9	1.4	1.7	3.5	52	7.0	8.7	259
	2" T-50	0.1	0.2	0.3	0.3	0.4	0.5	0.7	0.9	1.3	1.7	3.4	5.2	6.9	86	264
	2" T-33	0.1	0.1	0.2	03	0.3	0.4	0.5	0.6	1.0	1.3	2.6	3.9	5.2	6.4	353
	1"1-60	12	1.9	3.1	3.9	5.0	5.8	7.7	9.6	15.1			-		-	85
	1" 1-40	0.8	1.3	2.1	2.6	3.4	3.9	5.2	6.4	10.1	12.9					126
800	1 1/2" 1-60	0.4	0.7	1.2	1.5	1.9	2.2	2.9	3.7	5.7	7.4	14.7				103
	1 1/2" 1-40	0.3	0.5	0.0	1.0	1.3	1.5	2.0	2.5	3.8	4.9	9.8	14.7			155
	2" T-50	0.3	0.5	0.7	0.9	1.2	1.4	t.B	2.3	3.5	4.5	9.0	13.6			160
	2" 1-33	0.0	0.3	0.5	0.7	0.9	1.0	1.4	1.7	2.7	3.4	6.8	10.2	13.6	11000	214
	1*1-60	2.8	4.6	7.3	9.2	11.9	13.8									51
100	t*1-40	18	3.5	4.9	6.1	5.0	9.2	12.3	15.3							77
1000	11/2*1-60	1.0	1.7	2.7	3.4	4.4	5.5	6.8	8.6	13.3						67
ALC: NO	1 1/2" 1-40	0.7	1.5	1.8	2.3	3.0	3.4	4.6	5.7	8.9	11.4					100
	2" T-50	0.6	1.0	1.7	2.1	2.7	3.1	4.2	5.2	8.1	10.4					101
	2° T-33	0.5	0.8	1.2	1.6	2.0	23	3.1	39	6.1	7.8	15.6				135
	1"1-60	5.6	9.3	14.9	1208											35
10000	1"1-40	3.7	6.2	9.9	12.4											52
1200	1 1/2" 1-60	2.1	3.5	5.6	7.0	9.1	10.5	14.0								-43
	1 1/2" 1-42	1.4	2.3	3.7	4.7	6.1	7.0	9.3	11.7							66
	2" T-50	12	2.1	3.3	4.5	5.4	6.2	0.0	10.3							55
-	2" T-33	0.9	1.6	25	2.1	4.0	4.7	6.2	7.4	12.5	15.5					75
1402	11/2"1-60	3.9	6.5	10.4	12.9						100	_		_		28
	1 1/2" 1-40	2.6	4.3	6.9	8.6	11.2	13.0									42
	2" T-50	2.2	3.7	6.0	7.4	8.7	11.2	54.9								45
	2" T-33	1.7	2.8	4.5	5.6	7.3	8.4	11.2	14.0							60
1600	11/2"1-60	6.6	11.0													୍ ଏହ ୍
	1 1/2" 1-40	4.4	7.3	11.7	14.7											29
	2" T-50	3.8	6.3	10.1	12.6											33
	Z" T-33	2.8	4.7	7.6	9.5	12.3	14.2									45

PULTRUDED GRATING (Metric units) UNIFORM LOAD TABLES - DEFLECTION IN mm

NOTES:

- 1- The designer should not exceed MAXIMUM RECOMMENDED load at any time. MAXIMUM LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.
- 2- ULTIMATE CAPACITY represents a complete and total failure of the grating.
- 3- Walking loads, typically 2.4 KN/M is recommended for pedestrian traffic. Deflections for worker comfort are typically limited to 9mm or SPAN divided by 120 under full live load.
 For a firmer feel under full live load or a 3.6 KN/M load, limit deflection to 6mm or SPAN divided by 200.
- 4- The allowable loads are for STATIC LOAD CONDITIONS at ambient temperatures. Allowable loads for impact or dynamic loads should be a maximum of ONE-HALF the value shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance.
- 5- For applications at elevated temperatures, consult your manufacture.

Mobile: +98 938 560 1212

Tel: +98 21-22942856

PULTRUDED GRATING FASTENERS

Type "*M*" stainless steel hold down clips used to secure panels to a support using two adjacent grating bars for a secure fit.

Type "G" stainless steel hold clips designed to attach grating to any structural member flange, 3/4" or smaller in thickness, with no drilling required.

Type "*FB*" stainless steel flange blocks fit inside close mesh products allowing for installation of cap screws from the top surface of the grating.

Type "*RK*" stainless steel fasteners offer effective and more secure means for installing pultruded grating.

14

STANDARDS OF FRP COMPOSITES

The Following Standards are used in composite productions:

ASTM C-177-85	Heat Flux
ASTM D-149-87	Dielectric Strength
ASTM D-229-86	Testing Rigid Sheet for Electrical Insulation (Ladder)
ASTM D-256-87	Impact Resistance
ASTM D-495-84	Electrical Resistance
ASTM D-570-81	Water Absorption
ASTM D-635-81	Flammability
ASTM D-638-87b	Tensile Strength
ASTM D-695-85	Compressive Strength
ASTM D-696-79	Thermal Expansion
ASTM D-709-87	Specifications for Laminated Thermosetting Materials
ASTM D-732-85	Shear Strength by Punch
ASTM D-790-86	Flexural Strength
ASTM D-792-86	Specific Gravity
ASTM D-953-87	Bearing Strength
ASTM D-1499-84	Weathering
ASTM D-1505-85	Density
ASTM D-2344-89	Interlaminar Short Beam Shear Strength
ASTM D-2583-87	Hardness
ASTM D-2584-85	Ignition Loss
ASTM D-3647-84	Classifying Pultruded Shapes
ASTM D-3846-85	In – plane Shear Strength
ASTM D-3914-84	In plane Shear
ASTM D-3916-84	Tensile
ASTM D-3917-88	Dimensional Tolerances
ASTM D-3918-80	Pultrusion Terms
ASTM D-4385-88	Visual Defects
ASTM D-4475-85	Short Beam Shear Strength
ASTM D-4476-90	Flexural Properties
ASTM E-84-87	Tunnel Beam Test
ASTM E-662-83	Smoke Chamber
ASTM E-831-86	Linear Thermal Expansion (CTE)
ASTM F-1092-94	Handrails
ASTM G-23-81	Weathering
ASTM G-53-84	Weathering

Office: Iran, Tehran, Ressalat Expy, Bani Hashem St, Sepideh Alley, No.6, Unit 53 Tel: +98 21-22942856 Mobile: +98 938 560 1212

15

www.MTgroup.ir E-mail: mtg95.ir@Gmail.com

Dielectric